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Goal:

● Provide foundation and  relevant self & semi-supervised learning 
methods for ASR

● Provide learning from executing ‘Supervised to Semi-Supervised’ 
Case Study



Agenda: Part-I

● Foundation:
○ Speech, Dataset
○ RNNs, CNNs and Transformer comparison
○ End to end Convolution based model
○ Sequence to Sequence based acoustic model
○ Transformer based acoustic model

● Relevant approaches
○ Self training for end-to-end ASR
○ Semi-supervised with Word Selection

● Case Study
○ Supervised to Semi-Supervised
○ Practical tips



[10] Facebook https://arxiv.org/pdf/1911.08460.pdf

Case Study

https://arxiv.org/pdf/1911.08460.pdf
https://arxiv.org/pdf/1911.08460.pdf


In this paper consider 
● ResNet-, Time-Depth Separable ConvNets-, and Transformer-based acoustic models, 
● Trained with CTC or Seq2Seq criterions.
● Perform experiments on the LIBRISPEECH dataset 960hrs test-other
● with and without LM decoding, optionally with beam rescoring. 

End-to-End ASR: From Supervised to Semi Supervised Learning with Modern Architecture 



Quick recap - Foundation
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Speech Signal Processing



Audio signal:
20/25ms (10ms stride)
30ms, 50ms, 32ms, 100ms (5ms shift)

Filters:
40, 80, 120 Filter bank
Gammatone filters

Feature Extraction:
Conv-1D, MaxPooling
VGGNet

Features from Raw waveform: SincNet

Augmentation:
Vary the speed, Time, Frequency, 
Add various types of noises and audio

ASR Experiments - Feature Engineering

39 MFCC: Mel-Frequency Cepstral Coefficients
13 Mel cepstral coefficients + 13 first derivatives +
13 second derivatives

Spectrogram of filter bank (40)
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Spectrogram: Used with DNN, CNN
MFCC: GMM-HMM models



[1]  LibriSpeech- An ASR Corpus Based On Public Domain Audio Books
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Dataset - Librispeech

File Size *.tar.gz Audio files Hours Speakers Wav2letter lst/

dev-clean 337.9 MB 2,703 5.4 41 2703

dev-other 314.3 MB 2,864 5.3 34 2864

test-clean 346.6 MB 2,620 5.4 41 2620

test-other 328.7 MB 2,939 5.1 34 2939

train-clean-100 6,387 MB 28,539 100.6 252 28,539

train-clean-360 23,049 MB 104,014 363.6 922 104,014

train-other-500 30,593 MB 148,688 496.7 1167 148,688

All 7 above 292,367

train-all-960 ~60 GB 281,241 960 281,241



CTC Loss Function
● How do you distinguish between double ‘L’ or ‘L’ which was spoken for longer duration?
● CTC introduces blank token between symbols and in the beginning and end of the utterance
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CTC Loss Function
Convert input sequence of audio 
to spectrogram

Feed it to RNN/Transformer/MLP

The network give probability 
pt(a | X) distribution over all 
symbols for each input step

- From start to end

Compute the probability of 
different sequences/alignment

Marginalise over alignments to get 
distribution over outputs
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[2] Ashish Vaswani et al. Attention is all you need. Adv. NIPS, 2017. https://arxiv.org/pdf/1706.03762.pdf
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RNN-Bi-LSTM (Recap)



Transformer (Recap)



[3] A Comparative Study on Transformers vx RNN in Speech Applications IEEE Automatic Speech Recognition and Understanding Workshop 2019.
https://arxiv.org/pdf/1909.06317.pdf
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Transformer vs RNN

[3] A Comparative Study on Transformers vx RNN in Speech 
Applications IEEE ASR and Understanding Workshop 2019.

Transformers require more complex configurations
● optimizer
● network structure
● data augmentation

than the conventional RNN based models.

Provide practical guides for tuning Transformer in speech tasks to achieve state-of-the-art results



Transformer vs RNN 
Fig. 1. Seq2seq Architecture

[3] A Comparative Study on Transformers vx RNN in Speech 
Applications IEEE ASR and Understanding Workshop 2019.

Encoder:

Decoder:

e - no. of layers in EncoderBody

d - no. of layers in DecoderBody
t - target frame index

Loss:



Transformer vs RNN 
Transformer Architecture

[3] A Comparative Study on Transformers vx RNN in Speech 
Applications IEEE ASR and Understanding Workshop 2019.

Self-attention Encoder:

Self-attention Decoder:



Transformer vs RNN 
Transformer Architecture

[3] A Comparative Study on Transformers vx RNN in Speech 
Applications IEEE ASR and Understanding Workshop 2019.

Multi-Head Attention:



ASR Encoder Architecture
● X - a sequence of 83-dim log-mel filterbank frames 

with pitch features
● EncPre() transforms the source sequence X into a 

subsampled sequence X0 using 
○ two-layer CNN with 256 channels, stride 

size 2 and kernel size 3 or 
○ VGG like max pooling

● EncBody() transforms X0 into a sequence of 
encoded features Xe for the

● CTC and decoder networks.

Transformer vs RNN



ASR Decoder Architecture
● Receives the encoded sequence Xe and the 

prefix of a target sequence Y [1 : t - 1] of token 
IDs: characters or SentencePiece

● DecPre() in Eq. (3) embeds the tokens into 
learnable vectors.

● DecBody() and single-linear layer DecPost() 
predicts the posterior distribution of the next token 
prediction Ypost[t] given Xe and Y [1 : t - 1].

Transformer vs RNN



ASR Training
● During ASR training, both the decoder and the CTC module predict the frame-wise posterior distribution of Y 

given corresponding source X: ps2s(Y jX) and pctc(Y jX), respectively. 
● Use the weighted sum of those negative log likelihood values:

Transformer vs RNN

ASR Decoding
● Decoder predicts the next token given the speech feature X and the previous predicted tokens using beam search, 

which combines the scores of S2S, CTC and the RNN language model (LM):

are hyperparameters



Results are comparable to best performance. 

Transformer vs RNN - Results



Transformer vs RNN - Results

Transformer significantly outperformed RNN in 9 languages.



● When Transformer suffers from under-fitting,
○ increase the minibatch size which results in faster training time and better accuracy 

● Dropout is essential for Transformer to avoid over-fitting
● Data augmentation methods greatly improved both Transformer and RNN.

○ SpecAugment: A simple data augmentation method for automatic speech 
recognition. [ Park D. et.al. ]

○ Audio augmentation for speech recognition [ T. Ko et. al.]
● The best decoding hyperparameters are for RNN are generally the best for Transformer.

● Transformer’s decoding is much slower than Kaldi’s system because the self-attention 
requires O(n2) in a naive implementation

○ To directly compare the performance with DNN-HMM based ASR systems, a faster 
decoding algorithm for Transformer was developed.

● The accumulating gradient strategy can be adopted to emulate the large minibatch if 
multiple GPUs are unavailable.

Practical Tips



[4] Jason Li et. al. Jasper: An end-to-end convolutional neural acoustic model. 
In Interspeech, 2019. https://arxiv.org/pdf/1904.03288.pdf
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Figure 1: JasperBxR model  

Jasper: An end-to-end convolutional neural acoustic model. 

A Typical Block
Uses only (example block)

● 1D convolutions
● batch normalization
● ReLU
● Dropout
● Residual connections

NovoGrad, a variant of the Adam optimizer with 
smaller memory footprint

B - number of blocks, 
R - number of sub-blocks.

Computationally efficient end-to-end convolutional
neural network acoustic model
Sub-block architecture is designed to facilitate fast GPU 
inference



Figure 1: JasperBxR mode: 

Jasper: An end-to-end convolutional neural 
acoustic model - Complete Model

Post-Processing:
● Three blocks

Pre-Processing:
● One block



Figure 2: Jasper Dense Residual

Jasper: An end-to-end convolutional neural 
acoustic model -
Model with Dense Residual

Output of a convolution 
block is added to the 

inputs of all the following 
blocks (not concatenated 

as in ResNet



Transformer-XL - Increase context over multiple segments

Current Segment nSegment n-1Segment n-2Segment n-3



Jasper: An end-to-end convolutional neural acoustic model

4: with time and frequency masks similar to SpecAugment [ Park et. al. ]



[5] Awni Hannun et. al. Sequence-to-sequence speech recognition with time-depth 
separable convolutions. Interspeech 2019. https://arxiv.org/pdf/1904.02619.pdf
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● Fully convolutional seq2seq encoder architecture
○ With a simple and efficient decoder
○ An order of magnitude more efficient than a strong RNN baseline

● Time-depth separable convolution block
○ Dramatically reduces the number of parameters in the model while keeping the 

receptive field large. 
● Efficient beam search inference procedure to integrate a language model. 
● Improves by more than 22% relative WER over the best previously reported seq2seq 

results on the noisy LibriSpeech test set.

Seq2seq speech recognition with time-depth separable convolutions



Depthwise convolution:

Example: use 3 kernels to transform a 12x12x3 image to a 8x8x3 image

Each 5x5x1 kernel iterates 1 channel of image (1 channel - not all channels)
getting the scalar product of every 25 pixel group, giving out 8x8x1 image

Fig: Refer

https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728


Figure 1: The TDS convolution model architecture. 

● Partially decouples the aggregation over time
● Increases the receptive field of the model with a negligible 

increase in the number of parameters
● generalizes much better than other deep convolutional 

architectures
● Block structure can be implemented efficiently using a standard 

2D convolution.



(c) a fully connected 
block.

Figure 1: The TDS convolution model architecture. 

(a) TDS convolution layer

(b) a 2D convolution 
over time followed by

Input of shape T x w x c and produces an 
Output of shape T x w x c
Follow convolution with ReLU

● T is the number of time-steps, 
● w is the input width and 
● c is the number of input (and output) channels

● Output of the convolution as T x 1 x wc
● Apply a fully-connected layer, which is a 

sequence of two 1x1 convolutions (i.e. linear 
layers) with a ReLU non-linearity in between. 

● We add residual connections and layer 
normalization after the convolution and the 
fully connected layer. 

● The layer normalization is over all dimensions 
for a given example including time.



Experimental Setup:
Toolkit wav2letter++
Dataset: Full  960-hour LibriSpeech corpus
Best encoder has two 10-channel, three 14-channel and six 18-channel TDS blocks. 
Three 1D convolutions to sub-sample over time, one as the first layer and
one in between each group of TDS blocks. 
Kernel sizes are all 21 x 1. 
A final linear layer produces the 1024-dimensional encoder output. 

The decoder is a one-layer GRU with 512 hidden units. 

Input features are 80-dimensional mel-scale filter banks computed every 10-ms with a 25-ms window. 
We use 10k word pieces computed from the SentencePiece toolkit as the output token set. 

All models are trained on 8 V100 GPUs with a batch size of 16 per GPU. 
Synchronous SGD with a learning rate of 0.05, decayed by a factor of 0.5 every 40 epochs. 
Clip the gradient norm to 15. 
The model is pretrained for three epochs with the soft window and  = 4. 
Use 20% dropout, 5% label smoothing, 1% random sampling and 1% word piece sampling.



Table 1: A comparison of the TDS conv model to other 
models on the Librispeech Dev and Test sets.

Seq2seq speech recognition with time-depth separable convolutions



Figure 3: The WER as a function of beam size for both the
4-gram and the convLM.

Seq2seq speech recognition with time-depth separable convolutions



[6] Yongqiang Wang, et. al. Transformer-based acoustic modeling for 
hybrid speech recognition, 2019. https://arxiv.org/pdf/1910.09799.pdf
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Architecture
For streaming applications - use limited right context in transformer models

Transformers:
12-layer transformer architecture with di = 768
Per head dimension is always 64
FFN dimension is always set to 4 x di. 
This model has about 90M parameters. 

BLSTMs:
a 5-layer BLSTM with 800 units per layer per direction (about 94M parameters)
a 6-layer BLSTM with 1000 units (about 163M parameters)



1. Fully-connected feed-forward network (FFN), 
which is composed by two linear transformations 
and a nonlinear activation function in between.

2. The FFN network is applied to each position in the 
sequence separately and identically. 

1. To allow stacking many transformer layer, residual 
connections are added to the MHA and FFN 
sublayers.

● Dropouts are also applied after MHA and linear 
transformation as a form of regularization.

● Layer Normalization is applied before MHA and 
FFN 

● Third layer normalization (LN3) is necessary to 
prevent bypassing the transformer layer entirely. 

● “gelu” non-linearity in the FFN network.

Figure 1: One transformer layer

1, 2

3

3



https://github.com/pytorch/fairseq

https://github.com/pytorch/fairseq


Open-source sequence modeling toolkit
Train custom models for 

● translation,
● summarization, 
● language modeling, and 
● other text generation tasks. 

Fast inference for non-recurrent models

The toolkit is based on PyTorch and supports 
distributed training across multiple GPUs and 
machines. 
Support fast mixed-precision training and inference
on modern GPUs.

FAIRSEQ

https://github.com/pytorch/fairseq

Applications:
● Machine Translation
● Language Modeling 
● Abstractive Document Summarization
● Story Generation 
● Error Correction
● Multilingual Sentence Embeddings 
● Dialogue

https://github.com/pytorch/fairseq


Toolkit: PyTorch based fairseq

80-dimensional log Mel-filter bank features are extracted with a 10ms frame shift. 
A reduced 20ms frame rate is achieved either by stacking-and-striding 2 consecutive frames or
by a stride-2 pooling in the convolution layer if it is used. 
This not only reduces the computation but also slightly improves the recognition accuracy. 

Speed perturbation and SpecAugment (LD policy without time warping) are used. 
Focus on cross-entropy (CE) trained models and only selectively perform sMBR training on top of 
the best CE setup.

Use context- and position-dependent graphemes (i.e., chenones) in all experiments. 
Bootstrap HMM-GMM system using the standard Kaldi Librispeech recipe. 
Use  1-state HMM topology with fixed self-loop and forward transition probability (both 0.5). 

Experiment Setups



Transformer Training Tricks:

Due to the quadratically growing computation cost with respect to the input sequence length
- segment the training utterances into segments that are not longer than 10 seconds 2. 
- Though this creates a mismatch between training and testing, preliminary results show that 

training on shorter segments 
- not only increases the training throughput but 
- also helps the final WERs. 

Transformers are more prone to over-fitting, thus require some regularization. 
- SpecAugment is effective: without it, WER starts to increase after only 3 epochs, 
- while WER continues to improve during training with SpecAugment.



BiLSTM and Transformer comparison:
Table 2: Architecture comparison on 
the Librispeech benchmark

Positional Encoding - Convolution:
Use two VGG blocks beneath transformer layers: 
Each VGG block contains 2 consecutive convolution layers with a 3-by-3 kernel followed by a ReLu
and pooling layer;  32 channels are used in the convolution layer of the first VGG block and increase to 64 
for the second block. 
Maxpooling is performed at a 2-by-2 grid, with stride 2 in the first block and 1 in the second block. 
For an input sequence of 80-dim feature vector at a 10ms rate, this VGG network produces a 2560-dim 
feature vector sequence at a 20ms rate. 
Note that the perception field of each feature vector output by the VGG network consists of 80ms
left-context and 80ms right context, the same right context length as Frame Stacking. 
A linear projection is used to project the feature vector to the dimension accepted by transformers, 768.



Results - LibriSpeech:

Table 4: Comparison with previous best results on Librispeech.



Results - Right Context (for streaming): 

Table 5: Forcing transformer models to use limited right context (RC) 
per layer during inference. Given a 12-layer transformer, an RC of 10 
frames translates to 2.48 seconds of total lookahead.

Inference: Force every layer to attend to a fixed limited right context during inference. 
This creates a large mismatch between training and inference, 
the resultant systems can still yield reasonable WERs if the number of right context 
frames is large enough.



[7] Kahn Jacob et. al..Self-training for end-to-end speech recognition. 
ICASSP 2020. https://arxiv.org/pdf/1909.09116.pdf
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Self Training for End-to-End Speech Recognition
Training with pseudo-labels substantially improves the accuracy of a baseline model.
Approach is to use strong baseline acoustic and language model to generate

● The pseudo-labels, 
● Filtering mechanisms tailored to common errors from sequence-to-sequence models, and 
● A novel ensemble approach to increase pseudo-label diversity
● Ensemble of four models and label filtering



Generate pseudo labels:
Train a strong baseline acoustic model on a small paired data set 

Decoding:
Perform stable decoding with a language model (LM) trained on a large-scale text corpus to generate 
pseudo-labels.

Pseudo label filtering:
Evaluate one heuristic and one confidence-based method for pseudo-label filtering tailored to the 
mistakes often encountered with sequence-to-sequence models. 

Ensemble:
An ensemble combines multiple models during training to improve label diversity and keep the model 
from being overly confident to noisy pseudo-labels.

Approach



Effectiveness of self-training on LibriSpeech, to study the trade-off between
the amount of unpaired audio data
the quality of the pseudo-labels, and
the model performance.

Clean speech setting:
● as the label quality is high, the model performance depends heavily on the amount of data.

Noisy speech setting:
● a proper filtering mechanism is essential for removing noisy pseudo-labels. 
● In addition, using an ensemble of models can be complementary to filtering.

WER recovery rate (WRR):
Demonstrates how much gap between the baseline and the oracle that we can bridge with pseudo-
labels.

Approach



The pseudo-labelled data set ~D contains noisy transcriptions. 
Achieve the right balance between the size of ~D and the noise in the pseudo labels.
Filtering techniques on the sentence level with heuristic techniques.
Sequence-to-sequence models easily fail at inference in two ways: 
Looping

● Remove pseudo-labels which contain an n-gram repeated more than c times.

Early stopping
● Deal with early stopping by only keeping hypotheses with an EOS probability above a threshold.
● Filter examples where the beam search terminates without finding any complete hypotheses.

Length Normalised log likelihood:
For each pseudo-label, compute the length-normalized log likelihood from the sequence-to-sequence
model as the confidence score

Approach - Filtering:



Combine the model scores during inference to generate a single pseudo-labelled set with 
higher quality. As number of models increase, the decoding process becomes heavyweight. 

Sample ensemble.
Given M bootstrapped acoustic models, we generate a pseudo-labelled data set, ~Dm, for each model 
in parallel.
Combine all M sets of pseudo-labels with uniform weights and optimize the following objective during 
training

Approach - Ensemble:

First train M models on D using different randomly initialized weights.
Generate ~Dm with hyper-parameters tuned with each model, respectively.
During training, uniformly sample a pseudo-label from one of the M models as the target in every epoch.



Experiments using wav2letter++ framework:
Data - LibriSpeech
train-clean-100” set

containing 100 hours of clean speech as the paired data set.

Clean speech setting,
360 hours of clean speech in the “train-clean-360” set as the unpaired audio set, and

Noisy speech setting,
500 hours of noisy speech in the “train-other-500” set.

Self-training - LM:
Remove all books related to the acoustic training data from the LM training data
Sentence segmentation using the NLTK toolkit
Normalize the text by lower-casing
Remove punctuation except for the apostrophe, and replacing hyphens with spaces.
Do not replace non-standard words with a canonical verbalized form.
Resulting LMs achieve comparable perplexity to LMs trained on the standard corpus on the dev sets.



Setting
Encoder consists of nine TDS blocks in groups of three, each with 10, 14 and 16 channels and a 
kernel width of 21.
Use the SentencePiece toolkit to compute 5,000 word pieces from the transcripts in “train-clean-100” as 
the target tokens.
Training process: teacher-forcing with 20% dropout, 1% random sampling, 10% label smoothing and 
1% word piece sampling for regularization.
A single GPU with a batch size of 16 when training baselines, and 

● 8 GPUs when training with pseudo-labels.
SGD without momentum for 200 epochs with a learning rate of 0.05, decayed by 0.5 every 40 epochs 
when using one GPU or 80 epochs for 8 GPUs.
Train a word piece convolutional LM (ConvLM)
All beam search hyper-parameters are tuned on the dev sets before generating the pseudo-labels.
When training models with the combined paired and pseudo-labelled data sets, start from random 
initialization instead of two-stage fine-tuning.

Experiments using wav2letter++ framework:



Results - Importance of Filtering

Fig. 1a, b: Results of different filtering functions 
and the corresponding pseudo-label quality

Label quality is defined as the WER of the filtered pseudo-labels as compared to the ground 
truth.
Heuristic filtering, i.e. “no EOS + n-gram” filters, with c=2 and n=4 and then add confidence-
based filtering on top of the filtered data set.
Filtering improves the pseudo-label quality the threshold on the confidence score is adjusted



In the clean setting, the heuristic filter removes 1.8% of the 
data, and further removal of the worst 10% of the pseudo-
labels based on confidence scores results in a 5.2% relative 
improvement in WER on the dev clean set compared with a 
baseline without filtering.
More aggressive filtering improves the label quality but results 
in worse model performance.

Results - Importance of Filtering

In the noisy setting, removing the worst 10% of the pseudo-
labels results in a significant reduction in WER, and
the best performance comes from filtering 60% of the labels with 
a WER 22.7% relative lower on the dev other set compared with 
no filtering.
Filtering more data leads to the same degradation in model 
performance as in the clean setting.



Results - Model Ensemble

Combining multiple models improves the 
performance, especially for the noisy setting, where 
we obtain a 13.7% relative improvement with 
six models and heuristic filtering.

Since the sample ensemble uses different 
transcripts for the same utterance at training 
time, this keeps the model from being overly 
confident in a noisy pseudo-label.

In the noisy setting, model ensembles with both 
filterings improve WER by 27.0% relative compared 
with a single model without any filtering (Figure 1(d)).



Results - Comparison with Literature

Summarizes best results, as well as the  supervised baseline and the oracle models trained with ground-truth transcriptions.
Present results from both AM only greedy decoding and LM beam search decoding to demonstrate the full potential of self-
training.
WER recovery rate (WRR) demonstrates how much gap between the baseline and the oracle that can bridge with 
pseudo-labels. WRR is defined as

Table 1. Best results from single runs tuned on the dev sets.



Results - Comparison other Semi-Supervised Approach

The conventional pseudo-labelling approach together with filtering and ensemble produces a WER at least 65.1%
relatively lower than the previously best results.
The gain comes from 

● the strong baseline model with TDS-based encoders to generate the pseudo-labels, and 
● a much larger unpaired text corpus, which we believe is easy to obtain in a real-world setting. 



[8] Karel Vesely, et. al.. Semi-supervised DNN training with word selection for ASR. In Interspeech, 2017. 
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Semi-supervised DNN training with word selection for ASR
● Manually transcribed data, is slow and costly. For some rare languages it might be even 

difficult to find native annotators. Can save a lot of time and other resources, if only a part of 
the data is transcribed manually and a larger part is transcribed automatically by 
decoding.

● The decoding is done with a ‘seed’ ASR system trained with the manually transcribed data, 
while typically we also generate some confidences. Automatic transcripts are not perfect, 
but still, they can be used to improve the performance of the acoustic model by the semi-
supervised training (i.e. training with the mixed data: manually transcribed and automatically 
transcribed).

● This is ‘self-learning’, as the ASR system is re-trained with its own outputs. The 
confidences express the certainty of the decoded labels, and we will use them to filter or 
assign weights to the training data.

● ‘Data selection’ strategies on the level of a) sentences, b) words or c) frames.



Word level: Per-word confidence (MBR statistics)
● Use the ‘MBR confidence’, which is calculated as the statistics from the Minimum Bayes Risk (MBR) 

decoding. The quantity gamma(q; s) is the probability with which the word-symbol s is present at 
position q in the output word-sequence. 

● Simply take the words from the bestpath in lattice and calculate their gammas as their confidences. 
● This MBR confidence is the default word confidence implemented in Kaldi. 

Sentence level: Per-sentence confidence (average word-confidence)
● The per-sentence confidence csent is typically calculated as the average of the word confidences. 
● It is good to think about it as an estimate of the word accuracy in a sentence. 
● For self-training experiments we use ‘MBR confidences’.

Frame: Per-frame confidence (lattice-posterior)
● The frame-level confidence cframe-i is extracted from the lattice posteriors gamma (i; s), which 

express the probability of being in state s at time i. 
● For each frame i, the confidence is cframe-i is taken from the best-path in lattice. The posteriors  are 

computed using the forward-backward algorithm on the lattice.

Semi-supervised DNN training with word selection for ASR



Auxiliary GMM system
Splicing +/- 4 frames of the 13-dimensional PLPs (includes C0) extended by 3 

kaldi-pitch features
All features are cepstral mean variance normalized.

Spliced features are projected to 40 dimensions with a global LDA+MLLT [19] 
linear transform and per-speaker fMLLR [20] linear transform

4599 cross-word triphone tied states and 5.6 Gaussians per state 

fMLLR features output

440 dimensional input

6 Hidden Layers
(2048 sigmoidal units)

40 dimensional fMLLR features are spliced by +/- 5 frames
Renormalized to have zero mean and unit variance

RBM pre-training to initialize the 6 hidden layers
Frame CE training – mini batch SGD

Re-train by 4 epochs of sMBR training

4599 dimensional softmax outputThe Seed System:  



3. Experimental setup
Dataset -Vietnamese dataset.
The training data consist of conversational telephone speech and a small part of prompted speech.
The development set consists of conversational speech only. 

● various telephone channels: landlines, different kinds of cellphones, or phones embedded in vehicles.

Consider the Limited Language Pack (LimitedLP) scenario, in which 
11 hours of data are transcribed, and 
74 hours are ‘untranscribed’ (but we have the transcripts available for the analysis). 

The results are shown on the development set composed of 9.8 hours of data.
The Vietnamese phone set consists of 29 phonemes, which are marked with six different tones.
Used a trigram language model with Kneser-Ney smoothing built on the training transcripts from the 11 
hours, the model has 12k 3-grams and 47k 2-grams.

Experimental Setup:



Data selection
DNN is trained by ‘frame CE’ training with the mixed data: manually transcribed and automatically 
transcribed (decoded by the seed system).

In the first set of experiments, we investigate into the question of the granularity of the confidences. We want 
to know, what is the ideal size of the ‘data selection unit’.

Sentence selection
The most common approach in the literature is the selection of whole sentences - good to leave out 30-
50% of sentences, which brings a 0.3% WER improvement compared to adding all the sentences.



Data selection
Word selection
Select the top N% words. The word-selection leads to 0.7% better results than the sentence-selection. 
The optimal amount of added words roughly corresponds to the word-accuracy of the seed system.

The WER of the seed system 59.6 is better than the training with 0% added words 60.9. This is because 
the seed system is trained with ‘sMBR’, while the other results are with ‘frame CE’ training.



Data selection
Frame selection
The smallest possible unit for data-selection is the ‘frame’, the frames are produced with 10ms steps. 
Select the frames according to the ‘lattice-posterior’ confidence.

The best frame-selection result is on-par with the best word selection system in table 2. 
It is more convenient to do the word-selection by word-confidences, as the word 
confidences are represented more compactly than the frame confidences.



Data Weighting
Add all the untranscribed data, while the confidences are used as weights in the SGD training. 
The weights are used to scale the gradients from the individual frames. 

‘weighted sentences’ from table 5 are better than ‘selected sentences’ in table 1 
(WER 59.8 ->  59.3).
Even better results are achieved with the per-frame or the per-word weights 
(WER 59.3 -> 58.9 -> 58.8). 



Data Weighting

The best result 58.8 was obtained with the per-word confidences

If we compare the results of the ‘selected words’ in table 2 with the 
‘weighted words’ in table 6, the improvement is 59.1 -> 58.8. 



Re-tuning the systems
It is beneficial to ‘re-tune’ the self trained ‘initial model’. 
Approach is to keep the output layer ‘as-is’ and continue training with the 11 hours of the manually 
transcribed data and a smaller initial learning rate (0.001 instead of original 0.008). 



The overall WER improvements from the semi-supervised training become clear after re-
tuning the ‘simple word selection’ models for all the three databases (table 12). 
A ‘simple word-selection’ setup without hyperparameter tuning:

● Choose the amount (%) of the selected words with highest confidence according to the 
word accuracy on the development set.

Conclusion:
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[9] End-to-End ASR: From Supervised to Semi Supervised Learning with Modern Architecture 
https://arxiv.org/pdf/1911.08460.pdf

https://arxiv.org/pdf/1911.08460.pdf
https://arxiv.org/pdf/1911.08460.pdf


In this paper consider 
● ResNet-, Time-Depth Separable ConvNets-, and Transformer-based acoustic models, 
● Trained with CTC or Seq2Seq criterions.
● Perform experiments on the LibriSpeech dataset 960hrs test-other
● with and without LM decoding, optionally with beam rescoring. 

End-to-End ASR: From Supervised to Semi Supervised Learning with Modern Architecture 



End-to-End ASR: From Supervised to Semi Supervised Learning with Modern Architecture 

Acoustic Models
Three families of acoustic models (AMs). 

1. ResNet Acoustic Models
2. Time-Depth Separable Convolution Acoustic Models
3. Transformers-based Acoustic Models

● All AMs are token-based, outputting 10k word pieces.
● All AMs take 80-channel log-melfilterbanks as input, with STFTs computed on 25ms Hamming windows strided by 

10ms, except for TDS models that that are using a 30ms window.



Large number of Models to choose from



Phase-I: Decided to choose CTC and Transformer based Architecture

4-gram and
GCNN LM {



Phase-I: Decided to choose CTC and Transformer based Architecture



Phase II: Decide to choose Seq2Seq, CTC and Transformer based Architecture

Best Effort



Used wav2letter++1 toolkit 
Dataset: LIBRISPEECH, and the standard text data for LM training.
All hyperparameters including model architecture are cross-validated on dev-clean and dev-other.
Used Adagrad to train Transformers.
Do linear warm-up of the learning rate over 32k to 64k updates. Start with a learning rate of 0.03, and halve 
it every 40 epochs after the first 150.
Batchsize per GPU to 8 for Transformers. 
Transformers are trained on average for 3 days on 32 or 64 GPUs for biggest models (Transformers).
Used SpecAugment.

All the LMs are trained on the standard LIBRISPEECH LM corpus using toolkit
● KenLM [31] for n-gram LM and
● fairseq [32] for GCNN and Transformer LM.

Used the GCNN-14B as ConvLM, while the
Transformer LM is the same as the one trained on Google Billion Words

Experiment Details for Transformer based architecture:



Parameters:
● No. of layers:

○ 16, 20, 24, 32, 36, 48
● Embedding dimension:

○ 512, 768, 1024, 1536, 2048
● No. of heads:

○ 4, 8
● If overfits:

○ More training data or increase dropout
Subword:

○ Phonemes 73, Subword 5k/10k
Language Model:

○ 3-gram, 4-gram
○ Gated CNN based

Inference:
○ Beam size

Loss function:
● CTC, ASG or other loss

ASR Experiments - Transformer Architecture



Dataset - Librispeech

File Size *.tar.gz Audio files Hours Speakers Wav2letter lst/

dev-clean 337.9 MB 2,703 5.4 41 2703

dev-other 314.3 MB 2,864 5.3 34 2864

test-clean 346.6 MB 2,620 5.4 41 2620

test-other 328.7 MB 2,939 5.1 34 2939

train-clean-100 6,387 MB 28,539 100.6 252 28,539

train-clean-360 23,049 MB 104,014 363.6 922 104,014

train-other-500 30,593 MB 148,688 496.7 1167 148,688

All 7 above 292,367

train-all-960 ~60 GB 281,241 960 281,241



ASR Experiments - Comparison

Models (Paper &
100 iterations numbers)

test-clean 
WER

test-other 
WER

Epochs Paper no.s better 
than 100iter 
model: test-
clean-WER

Paper no.s 
better than 

100iter model: 
test-other-WER

Paper no.s 
better than 

100iter model: 
test-clean-WER 

%
CTC Transformer (ngram) - paper 2.92 6.65 320 -1.49 -4.74 -50.93%
CTC Transformer (ngram) -
experiment 4.41 11.39 100

CTC Transformer (gcnn) - paper 2.55 5.91 320 -1.20 -4.01 -46.95%
CTC Transformer (gcnn) -
experiment

3.75 9.92 100



Configuration (am_transformer_ctc.arch)
V -1 1 NFEAT 0
WN 3 C NFEAT 1024 3 1 -1       GLU 2         

DO 0.2        M 1 1 2 1
WN 3 C 512 1024 3 1 -1         GLU 2         

DO 0.2        M 1 1 2 1
WN 3 C 512 2048 3 1 -1         GLU 2         

DO 0.2        M 1 1 2 1
RO 2 0 3 1
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
TR 1024 4096 4 460 0.2 0.2
DO 0.2
L 1024 NLABEL

train-w2l-960.cfg

# Training config for Mini Librispeech
# Replace `[...]` with appropriate paths
--datadir=/w2l-libri/
--rundir=/w2l-libri/run-960hrs-21may
--archdir=/w2l-libri/wav2letter/tutorials/1-
librispeech_clean/
--train=lists/train-all-960.lst
--valid=lists/dev-clean.lst
--input=flac
--arch=network.arch
--tokens=/w2l-libri/am/tokens.txt
--lexicon=/w2l-libri/am/lexicon.txt
--criterion=ctc
--lr=0.1
--maxgradnorm=1.0
--replabel=1
--surround=|
--onorm=target
--sqnorm=true
--mfsc=true
--filterbanks=40
--nthread=4
--batchsize=4
--runname=librispeech_clean_trainlogs

https://github.com/facebookresearch/wav2letter/blob/master/recipes/models/sota/2019/am_arch/am_transformer_ctc.arch


nohup python wav2letter/tutorials/1-librispeech_clean/prepare_data-360-500.py -
-src $W2LDIR/LibriSpeech/ --dst $W2LDIR &

/home/om/w2l_e2e/lists# ls -l | wc -l
596205 May 20 20:13 dev-clean.lst     2,703
591480 May 21 04:15 dev-other.lst             2,864
582262 May 20 20:13 test-clean.lst           2,620
613304 May 21 04:15 test-other.lst           2,939

8864514 May 20 20:13 train-clean-100.lst        28,539
32262983 May 21 04:23 train-clean-360.lst    104,014
44132546 May 21 04:37 train-other-500.lst    148,688

ls -lt audio
4096 May 22 16:37 LibriSpeech

31918356480 Oct  3  2017 train-other-500.tar
23974318080 Oct  3  2017 train-clean-360.tar
6641244160 Oct  3  2017 train-clean-100.tar
355502080 Oct  3  2017 test-other.tar
370585600 Oct  3  2017 test-clean.tar
340326400 Oct  3  2017 dev-other.tar
362526720 Oct  3  2017 dev-clean.tar

Prepare for wav2letter:



Prepare for wav2letter:
ls -l text

291159 May 22 16:46 dev-clean.txt
268815 May 22 16:46 dev-other.txt

4287216164 Oct  3  2017 librispeech-lm-norm.txt
4287216163 May 22 16:46 librispeech-lm-norm.txt.lower.shuffle

284150 May 22 16:46 test-clean.txt
275697 May 22 16:46 test-other.txt
5298357 May 22 16:46 train-clean-100.txt

19225281 May 22 16:46 train-clean-360.txt
25539815 May 22 16:46 train-other-500.txt

ls -l am
19537672 May 22 17:01 librispeech-train+dev-unigram-10000-nbest10.lexicon

419269 May 22 16:47 librispeech-train-all-unigram-10000.model
82982 May 22 16:47 librispeech-train-all-unigram-10000.tokens

190417 May 22 16:47 librispeech-train-all-unigram-10000.vocab
19427962 May 22 17:01 librispeech-train-unigram-10000-nbest10.lexicon
50063453 May 22 16:46 train.txt

ls -l decoder
-rw-r--r-- 1 root root 4395628122 May 22 16:48 4-gram.arpa
-rw-r--r-- 1 root root 4395628122 May 22 16:48 4-gram.arpa.lower
-rw-r--r-- 1 root root   42816162 May 22 17:01 decoder-unigram-10000-nbest10.lexicon



Train (on single GPU):
nohup /root/wav2letter/build/Train train --flagsfile 
/root/wav2letter/recipes/models/sota/2019/librispeech/train_am_transformer_ctc.cfg --
minloglevel=0 --logtostderr=1 &

I0522 17:21:43.144173 64727 Train.cpp:573] Epoch 1 started!
I0522 20:50:28.656316 64727 Train.cpp:345]
epoch:    1 | nupdates:    35146 | lr: 0.400000 | lrcriterion: 0.400000 | runtime: 
03:27:50 | bch(ms): 354.82 | smp(ms): 0.65 | fwd(ms): 120.91 | crit-fwd(ms): 8.84 | 
bwd(ms): 189.45 | optim(ms): 43.45 | loss:   40.65332 | train-TER: 91.86 | train-WER: 
95.17 | dev-clean-loss:   20.00567 | dev-clean-TER: 58.12 | dev-clean-WER: 72.39 | dev-
other-loss:   21.03868 | dev-other-TER: 64.24 | dev-other-WER: 79.34 | avg-isz: 1229 | 
avg-tsz: 040 | max-tsz: 101 | hrs:  960.40 | thrpt(sec/sec): 277.25



nohup mpirun -n 4 --allow-run-as-root /root/wav2letter/build/Train train --flagsfile 
/root/wav2letter/recipes/models/sota/2019/librispeech/train_am_transformer_ctc.cfg --enable_distributed 
true --minloglevel=0 --logtostderr=1 &

/home/omp/sota# ps -ef | grep train
mpirun -n 4 --allow-run-as-root /root/wav2letter/build/Train train --flagsfile 
/root/wav2letter/recipes/models/sota/2019/librispeech/train_am_transformer_ctc.cfg --enable_distributed true --
minloglevel=0 --logtostderr=1

/root/wav2letter/build/Train train --flagsfile 
/root/wav2letter/recipes/models/sota/2019/librispeech/train_am_transformer_ctc.cfg --enable_distributed true --
minloglevel=0 --logtostderr=1

/root/wav2letter/build/Train train --flagsfile 
/root/wav2letter/recipes/models/sota/2019/librispeech/train_am_transformer_ctc.cfg --enable_distributed true --
minloglevel=0 --logtostderr=1

/root/wav2letter/build/Train train --flagsfile 
/root/wav2letter/recipes/models/sota/2019/librispeech/train_am_transformer_ctc.cfg --enable_distributed true --
minloglevel=0 --logtostderr=1

/root/wav2letter/build/Train train --flagsfile 
/root/wav2letter/recipes/models/sota/2019/librispeech/train_am_transformer_ctc.cfg --enable_distributed true --
minloglevel=0 --logtostderr=1

Train (on 4-GPUs):



--runname=am_transformer_ctc_librispeech-23may945am
--rundir=/home/om/sota
--archdir=/root/wav2letter/recipes/models/sota/2019
--arch=am_arch/am_transformer_ctc.arch
--tokensdir=/home/om/sota/am
--tokens=librispeech-train-all-unigram-10000.tokens
--lexicon=/home/om/sota/am/librispeech-train+dev-unigram-10000-nbest10.lexicon
--train=/home/om/sota/lists/train-clean-100.lst,/home/om/sota/lists/train-clean-
360.lst,/home/om/sota/lists/train-other-500.lst
--valid=dev-clean:/home/om/sota/lists/dev-clean.lst,dev-other:/home/om/sota/lists/dev-other.lst
--criterion=ctc
--mfsc
--usewordpiece=true
--wordseparator=_
--labelsmooth=0.05
--dataorder=output_spiral
--inputbinsize=25
--softwstd=4
--memstepsize=5000000
--pcttraineval=1
--pctteacherforcing=99
--sampletarget=0.01
--netoptim=adadelta
--critoptim=adadelta

--lr=0.4
--lrcrit=0.4
--linseg=0
--momentum=0.0
--maxgradnorm=1.0
--onorm=target
--sqnorm
--nthread=6
--batchsize=8
--filterbanks=80
--minisz=200
--mintsz=2
--minloglevel=0
--logtostderr
--enable_distributed=true

Configuration:



epoch:  100 | nupdates:   869913 | lr: 0.400000 | lrcriterion: 0.400000 | runtime: 
01:47:48 | bch(ms): 736.20 | smp(ms): 0.66 | fwd(ms): 120.91 | crit-fwd(ms): 8.84 | 
bwd(ms): 570.29 | optim(ms): 44.00 | loss:    1.98598 | train-TER:  1.55 | train-WER:  
3.57 | dev-clean-loss: 2.20011 | dev-clean-TER:  2.16 | dev-clean-WER:  5.29 | 
dev-other-loss: 4.64947 | dev-other-TER:  7.09 | dev-other-WER: 13.92 | avg-isz: 
1229 | avg-tsz: 040 | max-tsz: 096 | hrs:  960.51 | thrpt(sec/sec): 534.53

Train - after 100 epochs:

$ gpustat
dev007          Sat May 23 05:22:38 2020  440.33.01
[0] Tesla V100-PCIE-16GB | 37'C, 99 % | 12019 / 16160 MB | root(12007M)
[1] Tesla V100-PCIE-16GB | 36'C, 99 % | 11975 / 16160 MB | root(11963M)
[2] Tesla V100-PCIE-16GB | 37'C, 99 % | 12105 / 16160 MB | root(12093M)
[3] Tesla V100-PCIE-16GB | 35'C, 100 % | 12077 / 16160 MB | root(12065M)



Train - WER on LibriSpeech



Train - Loss on LibriSpeech



Test:
# wav2letter/build/Test --am /home/om/w2l/librispeech_clean_trainlogs/chk-pt-90epochs-7-may-
2020/001_model_lists#dev-clean.lst.bin  --maxload 10 --test lists/dev-clean.lst –show

Decode:

# wav2letter/build/Decoder --am /home/om/w2l/librispeech_clean_trainlogs/chk-pt-90epochs-7-
may-2020/001_model_list/w2l/am/lexicon.txt --lm=/home/omprakash.s/w2l/lm/3-gram.arpa –show --
tokens=/home/omprakash.s/w2l/am/tokens.txt --lexicon=/home/omprakash.s/



Setting up Docker - Issue:

(base) om@dev007:~$ sudo docker run --runtime=nvidia --rm -itd --ipc=host -
v /home/omprakash.s/w2l-libri-local/:/w2l-libri-local/ -v 
/home/omprakash.s/w2l-libri-local/wav2letter:/root/wav2letter/ --name w2l-
new-local wav2letter/wav2letter:cuda-latest

C17fcc7506fe0ba67b02c5cbed0271355d9ffeb4e65fb528078cc711615f949b

(base) om@ldev007:~$ sudo docker exec -it w2l-new-local bash



Audio file read 

● While preparing lst files, the process used to terminate if there is any error in 
reading file

● Had to use 3rd party tool to verify read is working for all audio files before 
preparing lst files



Seq2Seq model and ASG training

● Was not able to run as the GPU memory was insufficient



Learning rate ramp up

● There was an issue where learning rate didn’t increase and loss was not 
decreasing

● It was fixed



Adjust AM and LM weight parameter

● Adjusted lm-weight parameter in configuration file



Beam Size

● Reduced the beam size from 250 to 100, and didn’t get degradation



Reduce experimentation time

● Reduced training set to half by removing low confidence samples (from 
existing ASR system)

● This helped in doing architectural change validation faster

104



No. of Layers: 16, 20, 24, 40, 32, 36

Embedding Dimension: 512, 768, 1024, 1536, 2048

No. of heads: 4, 8

Other parameters: 

● Beam size, Language Model Weight, Learning rate

Architecture Evaluation

Three Layers
1D convolution

(kernel 3)
Max Pooling over 

2 frames

24 Layers
hidden size 768

4 attention heads

Input feature 40, 80, 120  Filterbank

FFN – 3072
One hidden layer 

ReLU

CTC Loss

4. Which is fed to as 768 embedding dimension input to transformer

3. After 2nd and 3rd convolution and max pooling get frame of 20ms

2. After first convolution and max pool over two frames - get 4 frames of 80ms

1. Eight frames each of 20ms (total 160ms)

Transformer

105



am_transformer_ctc_36_768_3072_8h_30july.arch

V -1 1 NFEAT 0
WN 3 C NFEAT 2048 3 1 -1
GLU 2
DO 0.2
WN 3 C 1024 2048 3 1 -1
GLU 2
DO 0.2
WN 3 C 1024 2048 3 1 -1
GLU 2
DO 0.2
WN 3 C 1024 2048 3 1 -1
GLU 2
DO 0.2
WN 3 C 1024 2048 3 1 -1
GLU 2
DO 0.2
WN 3 C 1024 2048 3 1 -1
GLU 2
DO 0.2
M 8 1 81 
RO 2 0 3 1
POSEMB 768 460 0.2
TR 768 3072 8 460 0.2 0.2 (36 times)
POSEMB 768 460 0.2
L 768 NLABEL

am_transformer_ctc_48x512x2048.arch

V -1 1 NFEAT 0
WN 3 C NFEAT 2048 3 1 -1
GLU 2
DO 0.2
WN 3 C 1024 2048 3 1 -1
GLU 2
DO 0.2
WN 3 C 1024 2048 3 1 -1
GLU 2
DO 0.2
WN 3 C 1024 2048 3 1 -1
GLU 2
DO 0.2
WN 3 C 1024 2048 3 1 -1
GLU 2
DO 0.2
WN 3 C 1024 2048 3 1 -1
GLU 2
DO 0.2
M 8 1 81 
RO 2 0 3 1
POSEMB 512 460 0.2
TR 512 2048 8 460 0.2 0.2 (48 times)
POSEMB 512 460 0.2
L 512 NLABEL
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